Knowledge that will change your world # Introduction to metabolomics research Stephen Barnes, PhD University of Alabama at Birmingham T argeted sbarnes@uab.edu M etabolomics & P roteomics L aboratory NIH Precision Medicine Initiative – All of Us #### What is "Metabolomics"? - Metabolomics is like other types of –omics analysis (microarray, RNA-Seq, proteomics, etc.) - Offers a "comprehensive" view of all detectable chemicals (not just metabolites) - Can be applied to body fluids - Plasma/sera, urine, saliva, tears, fecal water, etc. - Also to tissues - Liver, lung, heart, kidney, brain, eyes, etc. - And to single cells - Human, rodent, yeast, bacteria, etc. ## **Synopsis** - Why has the metabolome (and metabolomics) become so important? - What is the metabolome? - How do I do a metabolomics experiment? - What platform can I use? - · How do I analyze the data? - Can I integrate metabolomics data with other –omics data? See Karan Uppal in 2017 Workshop - Future for metabolomics in clinical and precision medicine In sudden disgust, the three lionesses realized they had killed a tofudebeest—one of the Serengeti's obnoxious health antelopes. #### Be kind to your "cat" The main hepatic lesion was seen in 60% of the sexually mature cheetah (out of 126 captive animals). Observed in 1 year olds, but got worse with age and led to liver failure. Came from supplementation of the horsemeat diet with soy $protein\ and\ the\ phytoestrogens\ therein.$ #### Cats are exquisitely sensitive to aspirin and tylenol - The defect is in UGT1A6 which has become a pseudogene - the WT form glucuronidates phenols (a mechanism to excrete them) - o Cats are hypercarnivores - o Not exposed to modern drugs or plants in which there are substantial amounts of - Victims of "Use it or lose it" - o Diet-driven evolution - Mutations in exon 1 - o Stop codons at bp 274-276 and 379-381 (>10 MYA) - UGT1A1 that glucuronidates bilirubin is unaffected #### Where did metabolomics came from? ### **Transition of mass spectrometry to biology** Ralf Schoenheimer **David Rittenberg** - While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (²H), and later carbon (¹³C) and nitrogen (¹⁵N), to study biochemical pathways - Understanding the pathways of metabolism was born # Radio-GC analysis metabolomics in its infancy Radio gas-liquid chromatography with digitization of collected data Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime mold, *Physarum* polycephalum #### **Course goals** - To understand - The vital roles of metabolites - The origins of metabolites - That metabolomics is high dimensional - The best methods for extracting metabolites - How to select the analytical approach - Qualitative and statistical analysis of the data - How to identify the "interesting" metabolites - How to map to (or define) pathways - The value of stable isotopes #### **NMR** spectroscopy and metabolomics Permanent Superconducting ferromagnet Bulk magnet Coil electromagnet https://nationalmaglab.org/images/news events/news/2015/october/pnictide magnetism 1oct2015.jpg NMR has had several critical development steps - Fourier Transform analysis of collected data, increase in field strength with superconducting magnets, microcoil, cryogenic analysis, hyperpolarization. # **Today in Computing** #### On my desk in 2018 - The Apple MacBook Air with 2 quad core Intel i7 processors - Operates at 2.0 GHz - Memory of 8 GB - Access 1.333 GHz - 512 GB Flash memory storage - 10 Gbs Thunderbolt I/O - Cost ~\$2,000 same my first Apple II+ with 48 k of memory #### **IBM Blue-Gene** - Massive parallel computing - Replaced by Dell EMC cluster operating at 110 Tflops - In its current configuration it has 78 compute nodes, each with 24-core processors (1,872 cores total) - Operates with 10 and 40 GB ethernet #### **NIH Common Fund Metabolomics Program** - Metabolomics Workbench: http://www.metabolomicsworkbench.org/ - Regional Comprehensive Metabolomics Research Centers - University of Michigan: http://mrc2.umich.edu/index.php - UC Davis Metabolomics Center: http://metabolomics.ucdavis.edu/ - UNC-CH: https://transforming-science.com/tag/eastern-regional-comprehensive-metabolomics-research-core/ - SE Center for Integrated Metabolomics: http://secim.ufl.edu/ - Resource Center for Stable Isotope Metabolomics: http://bioinformatics.cesb.uky.edu/bin/view/RCSIRM/ - Mayo Clinic Metabolomics Resource: http://www.mayo.edu/research/core-resources/metabolomics-resource-core/overview #### MRC-NIHR National Phenome Centre 600 MHz NMR instruments in surgical suite Mass spectrometers (10 Q-TOFs) each dedicated to one assay format Iknife - revolutionizing surgery This is Next-GEN precise medicine #### The UK National Phenome Center, LC-MS labs # **Great challenges in metabolomics** - · The extent of the metabolome - From gaseous hydrogen to earwax - Having complete databases - METLIN has 1 million+ metabolite records, but your problem always creates a need to have more - Improvement in the size of a MSMS database (100,000+) - Storing and processing TBs of data - Standards and standard operating procedures - Being able to do the analyses in real time Questions?